If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m^2-20m-32=0
a = 7; b = -20; c = -32;
Δ = b2-4ac
Δ = -202-4·7·(-32)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-36}{2*7}=\frac{-16}{14} =-1+1/7 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+36}{2*7}=\frac{56}{14} =4 $
| 3y=(5y+1)+1 | | y=(-2)0+3 | | y=(-2)2+3 | | 0.2x-0.6x-23=1 | | 5g+80=87 | | y=(-2)(-3)+3 | | 2^2+6^2=c^2 | | 18+160t-49t^2=0 | | 2x÷5=4÷7 | | y=(-2)5+3 | | 56=63-d | | (3,-4)m=6 | | 1/3(6x-9)=1/2(8x-4) | | 0.08(y-5)+0.06y=0.04y-0.2 | | 1.8+16t-4.9t^2=0 | | (x+25)=3(x+5) | | 9^2+b^2=41^2 | | 63x-35+35=35 | | -0.1+v/2.2=7.4 | | 1.8+16t+-4.9t^2=0 | | 12x+19x-9+5=-9x+5-9 | | 4(h+1)=4 | | 7÷9n+1÷6=1÷2n-1÷6 | | -2x-1.4=6+35.6 | | 7b+6b=8b-2b | | -63x-35=35=35 | | 4/9x+6=5/9x-2 | | 4x=-3-1 | | 7/9n+1/6=1/2n-1/6 | | x+23=910x+23=910. | | 34=-2(-7n+1)-5n | | -2-13.8x=-8x-6x1 |